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Chatwin & Sullivan (1990) have demonstrated that, for a wide range of self-similar 
scalar fields, the moments of the probability density function of concentration have a 
very simple form. Here, an extension to this simple form which takes account of the 
source distribution is developed. This extension has two effects. Firstly it modifies the 
values of the two parameters appearing in the original theory and in particular explains 
the observed behaviour of these parameters very near to a line source of heat in grid 
tubulence. Secondly, it introduces an additional parameter in the description of each 
moment beyond the second. It is shown that these additional parameters are necessary 
in order to describe measurements of the first four central moments throughout the 
concentration field from a continuous line source of heat in grid-generated turbulence. 

1. Introduction 
Contaminant concentration values in a turbulent flow are reduced through molecular 

diffusion and these changes are readily observed through the probability density 
function p(8;  x, t),  where 

p(O;~,t)dO=prob{f?<I'(x,t) < @+do}, (1) 

and T(x,t) is the concentration at the position located by vector x at time t. It is 
generally expected (see Derksen & Sullivan 1990) that a good approximation to 
p ( 0 ;  x, t )  can be found by inverting the lower-order moments, 

where 

(0- C)"p(B; X, t )  d0, 

( 3 )  

using a maximum entropy formulation, for example. In (2) and ( 3 ) ,  we have used C 
to denote the mean concentration, the fluctuating component is denoted by c, and 
r = c+c. 

In Chatwin & Sullivan (1990) the simple algebraic expression, 

was proposed for the moments at large downstream distances in self-similar turbulent 
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shear flows. In (4) ~ ( 7 )  = C(v)/C,,, 7 = y / L ,  with similarity length scale L, and y is the 
cross-stream distance measured from the location of the maximum value of mean 
concentration C, = C(0). The parameters a and p are constants that depend on the 
particular source and flow configuration. Data from a wide variety of these flows are in 
agreement with the proposal that 1 < a < 2 and 0.3 < p < 1. 

The rationale used in the derivation of (4) is that molecular diffusion acts slowly and 
the effects of molecular diffusion take a much greater downstream distance to develop 
than do the effects of turbulent convective motion. The effects of molecular diffusion 
can thus be approximated by modifications to the moment distribution for zero 
diffusivity ( K  = 0) which is known exactly. In particular, the source concentration in 
this moment distribution is replaced by a ‘local’ value, aC,, and a constant of 
proportionality p” is introduced to account for the increased background concentration 
due to molecular diffusion. 

The attraction of results like (4) is their simplicity and their ability to estimate higher 
moments (and hence the probability density function) given a knowledge of the mean 
concentration. For example, it can be shown (Derksen, Sullivan & Yip 1994) that (4) 
corresponds to a probability density function conskting of two delta functions. Unlike 
the hypothetical situation when K = 0, the location of these delta functions corresponds 
to high and low (but non-zero) concentrations which are functions of 7. Thus the 
probability density function corresponding to (4) is non-trivially different from the 
K = 0 case. The moment distributions developed later in this paper do not, upon 
inversion, result in a probability density function consisting of two delta functions. 

The disparity between convective and molecular diffusive scales is also likely to be 
satisfied in many regions where contaminant distributions are not self-similar and, 
provided a and p are taken to vary with time or with downstream distance, (4) would 
describe the lateral distribution of moments. There is some support for this contention 
based on the measured distributions of second moments. The data of Stapountzis et al. 
(1 986) and Warhaft (1 984) for a heated line source and of Sullivan (1 97 1) for relative 
diffusion in a meandering plume in Lake Huron are considered in Moseley (1991), the 
data of Fackrell & Robins (1982) for an elevated point source in a turbulent boundary 
layer are examined in Sullivan & Yip (1989) and the Karnik & Tavoularis (1989) 
measurements of a line source in uniformly sheared turbulent flow are studied in 
Chatwin, Sullivan & Yip (1990). These data are all reasonably represented by the 
suggested modification to (4). This preliminary evidence has motivated the present 
more complete study of the lower-order moments throughout the plume from a heated 
line source in grid turbulence. 

The theory (4) (and its proposed extension to non-self-similar scalar fields) was 
developed for a uniform source for which the concentration takes a fixed value 8, 
within the source fluid and is zero outside the source. Then the parameters a and /3 
approach unity at the source. However, the data sets referred to above (and the data 
discussed in the present work) do not show this behaviour. This is not surprising since 
it is well-known that concentration statistics depend on the source details, especially in 
the near field (see e.g. Chatwin & Sullivan 1979; Fackrell & Robins 1982). 

Here therefore we have relaxed the assumption of a uniform source distribution in 
order to explore its effect on the theory. Some of our asymptotic results do not require 
detailed assumptions about the nature of the flow (in common with the original 
theory). However, we also derive some results specifically for homogeneous turbulence. 
We do this mainly to explore the near field, where the detailed structure of the scalar 
field depends sensitively on the source distribution. We compare the predictions of the 
modified theory with detailed measurements of the first four moments of the 
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concentration field downstream of a line source in grid turbulence. Our objective is not 
to develop a complete new theory valid under arbitrary conditions, but to examine the 
potential limitations of the existing theory using the specific example of homogeneous 
turbulence. 

The plan of the paper is as follows. In $2 the theory is developed for an 
instantaneous, arbitrary source distribution. Results for the K = 0 case (which is 
generally a good approximation for small times) are derived and modified to account 
for the effects of molecular diffusion as was done in Chatwin & Sullivan (1990). 
Emphasis is placed on the contrast between uniform and non-uniform source results. 
A Gaussian source in homogeneous turbulence is used to illustrate the small-time 
behaviour. Overall, a structure for the moments that is similar to (4) is obtained but 
each moment higher than the second introduces a new function which we denote by 
h,(t). In $ 3  the present data set is described and compared with the results of $2. Our 
conclusions are presented in $4. 

2. Theory 

2.1. Uniform and non-uniform source results for K = 0 
When K = 0 the probability density function for the concentration from a uniform 
source of concentration 8, is 

(5 )  p ( e ;  X, t )  = n(x, t )  q e  - 8,) + (1 - n(x, t ) )  s(e) 
where n(x, t )  is the probability of being in source fluid (see Chatwin & Sullivan 1990). 
The moments of p are 

Although these results apply specifically for the case of the uniform source distribution, 
in other respects they are very general, assuming nothing, for instance, about the 
nature of the flow or source configuration. 

The original Chatwin & Sullivan theory (4) results from modifications to (6) to 
account for the effects of molecular diffusion. Specifically, 8, in (6) is replaced by the 
‘local’ concentration value aC, and a separate factor /? is used to account for other 
aspects of the dissipation of scalar fluctuations and instrument smoothing. It was 
suggested by Chatwin & Sullivan (1987) that a would be reasonably insensitive, and /? 
would be sensitive, to instrument smoothing. Some support for this position is found 
in the measurements of Sakai et al. (Chatwin & Sullivan 1993) where four probes with 
sample length ranging from 0.1 to 0.5 mm were used to measure second central 
moments of a passive scalar concentration in a turbulent water jet. They confirmed (4) 
with n = 2 for all probe sizes and their results show the values of a to be virtually 
constant (a maximum and irregular variation of 4 % about the mean value 1.29), while 
the values of /3 systematically increased from 0.40 to 0.57 with decreasing probe size. 
The effect of sampling on the present experimental data is discussed in $3. 

We consider now the case in which a quantity Q of contaminant with concentration 



144 B. L. Sawford and P. J. Sullivan 

Y ( x )  is released at t = 0. For this non-uniform source concentration the probability 
density function of the concentration for K = 0 is 

p ( 0 ; x ,  t )  = S(O-Y(x’))P(x’;x,  t)dx’, (7) S,,. 
where P(x’; x, t )  dx’ is the probability that fluid located by vector x at t came from a 
volume element dx’ about x’ at t = 0. The a s .  designation indicates integration over 
all space. 

If the source volume, V,, is finite, i.e. Y ( x )  = 0 for x+ V,, then the initial location of 
a fluid particle within the source is ‘forgotten’ (for a passive scalar contaminant) for 
times for which ai(t) % V,, where a,(t) is the standard deviation of the displacement 
of particles from a point. Then the integral in (7) decouples to give 

p(B;x,t) M n(x, t )  V;l/ S(@-Y(x’))dx’+(l -n(x,t>)S(O), (8) 
vo 

where the relationship 

n(~, t )  = P(x’ ; X, t )  dx’ M V, P(0;  X, t )  Lo (9) 

has been used to facilitate comparison with ( 5 )  and, for example, with the structure 
given in Chatwin & Sullivan (1989). The moments corresponding to (8) are 

where Arl0t- l  = (1 1) 

A,= 1. 
Without loss of generality, the source concentration scale O0 can be chosen so that 

Although (8) and (10) have been derived for a strictly finite source volume, the 
moment equations (10) with (11) also hold (provided the integrals exist) for an 
arbitrary source with concentration scale B0 and a finite representative length scale, 

for times such that ap(t) % Lo. For example, (10) holds for a Gaussian source 
distribution. 

The simple structure of higher moments given in (6) for a uniform source is 
recovered in (10) for a distributed source once the cloud size is much larger than the 
source size but with the introduction of one additional constant A, for each moment 
higher than the second. Of course, for Y(x )  uniform over V, in (1 l), A, = 1 and (6) is 
recovered from (10). The primary concern in this paper is the evolution of moments 
with distance downstream from the source to an asymptotic state like that given in (4) 
for self-similar flows. In particular, the significance of the new parameters A, arising 
from a distributed source when K =k 0 needs to be assessed with experimental data. 
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FIGURE 1 (a). For caption see p. 147. 
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FIGURE 1 (b). For caption see facing page. 
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FIGURE 1. Cross-stream profiles for the mean (i), the second, third and fourth central moments, 
(iiHiv), the skewness (v) and kurtosis (vi) of the concentration field at downstream locations (a) x/x, 
= 6.45 x (b) x/x, = 0.323 and (c)  x/x, = 8.39. The points are from the data of Sawford & 
Tivendale (1992) for a line source in grid turbulence and the lines represent the best fit of the theory 
(12) to these data. Three replicates are shown. 
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2.2. Representing the effects of molecular diffusion 
We are now in a position to complete the extension of Chatwin & Sullivan’s theory for 
application to the developing scalar field downstream of an arbitrary, distributed 
source. In parallel with (4) concentration scales appropriate to a distributed source are 
introduced by replacing Bo in (10) with aCo and using the factor p”, as in (4), to account 
for background concentrations due to K.  Here the additional parameters A, are in a 
form to distinguish between a uniform and non-uniform source. Note that although 
these new parameters are identified in terms of the integrals (11) over the source 
distribution, these results are strictly valid for K = 0 and so in practice cannot be used 
to calculate the new parameters when K i 0. Rather, following the philosophy of the 
original Chatwin & Sullivan approach, these results suggest an underlying structure 
which can be modified in an heuristic way to account for the effects of molecular 
diffusion. Thus a, /3 and A, will be determined empirically and will in general be 
functions of time in the case of a cloud or distance downstream in the case of a steady 
source. With these changes (10) becomes 

- 
c2(x, t )  = p“: x(a - X I ,  
c3(x, t )  = p 3 q  X(A; a2 - 3ax + 2x7, 
- ] (12) - 

c4(x, t )  = p”C: x(A4 a3 - 4A; a2x + 6ax2 - 3x3), 

where for clarity of presentation the arguments of the functions have been suppressed. 
Of course, for A, = 1 and a and p constant, (4) is recovered from (12). It now remains 
to compare (12) with experimental data. 

2.3. The small-time behaviour of a and ,8 
Since it requires a finite time before the effects of molecular diffusion are significant, the 
results (4), (6) and (10) for K = 0 apply as t + 0, but the details depend on the nature 
of the source. 

For a uniform source, comparison of (4) and (6) suggests that a(t)  - Bo/Co(t) and 
p(t) - 1. This is also true for a steady source such as a jet or wake, for example, with 
time t replaced by distance downstream. Chatwin & Sullivan (1990) have shown that 
this statement has the interesting consequence that the cross-stream profile of the 
second moment will change from an initially bimodal distribution (for a(t) < 2) to a 
unimodal distribution at larger times (or further downstream) where a(t)  2 2. This 
behavour is often observed experimentally and is apparent in figure 1 and also in figure 
2. This small-time asymptotic behaviour provides a convenient and valuable reference 
base with which to assess the effects of molecular diffusion using experimental data. 

We have shown that when the source is non-uniform the uniform source result for 
a and p will ultimately be reached when rr,(t) 9 Lo. However, we indicated in the 
Introduction that experimental data do not conform to the uniform source result 
p+ 1 as t + O .  The need to account for the details of the source distribution at small 
times is our main motivation for studying the non-uniform source case here and 
for contrasting it with results for a uniform source. 

As a specific illustration which is germane to the interpretation of the experimental 
results presented in 0 3, consider an instantaneous, one-dimensional source in 
homogeneous turbulence. In this case the displacement probability density function is 
Gaussian. 
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where we recall that gP is the standard deviation of the displacement of independent 
particles released at a point. 

For a uniform source distribution of concentration Bo on IzI < Lo, 

which, with (6), completely specifies the concentration moments. The function a(t)  is 

a(t)  = 8,/C(O, t )  = l/erf - ( 2 2 7  
which approaches unity as t + 0 (i.e. at the source) and /3 = 1 (cf. (4)). 

In contrast, we also consider the Gaussian area source distribution, 

where a 4 2  is included, without loss of generality, so that from (1 1) A, = 1. Using (16), 
(13) and (7), the nth moment of the concentration for K = 0 is 

where & = rp/cr0. The second central moment is 
- 
c2(z, t )  = P(2, t )  - @(z, t). (18) 

The limit &(t) $- 1 has already been discussed and then (17) reverts to (10) and, by 
comparison with (4), to the uniform source result a(t) = Bo/Co(t) and P = 1. At smaller 
times the a,/3 structure of (4) only approximately represents the variance for a 
Gaussian source (i.e. (18) with C and f" given by (17)). One way this approximation 
can be demonstrated is by matching the location and magnitude of the off-axis 
maximum value of the variance with that of (4). This procedure results in 

- 1. 
1 + 2&2(t) 

P"0 = 1 + &2(t )  

Again, for &(t) $- 1 (19) and (20) give a(t) = Bo/Co and P(t) = 1 respectively. As t+0, 
a(t)  + 2/e1/, and P+ 0. The approximation 

- 
c2(z, t )  = C(Z, 0 P2(t) ( 4 1 )  Co(t) - C(Z,  0) (21) 

with a(t)  and P(t) given by (19) and (20) thus represents the salient features of the 
Gaussian source for both t+O and for &(t) % 1 (which encompasses the transition 
from a bimodal to a unimodal distribution), as shown in figure 2. The feature to note 
in (20) is that, in contrast to the uniform source case, /3(t) monotonically increases from 
its initial value of zero. 

It is straightforward to calculate explicitly the nth moment of the concentration for 
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FIGURE 2. Cross-stream profiles of the concentration variance for a Gaussian source in the absence 
of molecular diffusion. The symbols represent (17) and (18) for B = 1 (O), B = 2 (m) and B = 5 (A). 
The lines represent the theory (19), (20) and (12) with ( c L , ~ )  = (1.35,0.5), (1.83,0.8) and (3.75,0.96) 
respectively. The abscissa has been normalized by the particle dispersion, cr,(t) and C, is the centreline 
value of the mean concentration. 

even more general sources in this special case of K = 0 in homogeneous turbulence. The 
resulting near-source behaviour depends critically on the details of the source 
distribution. Consider for example the ' two-source problem' consisting of a pair of 
sources each of radius Lo and separation d.  In this case the cross-wind distribution of 
the concentration variance very near the source has four peaks corresponding to 
fluctuations generated by the large gradients near the edges of each source. Clearly 
such a complex structure is beyond the simple a, /3 description. However, even in this 
case, for travel times (or distances downstream) such that the single-particle dispersion 
is much larger than both Lo and d, then the asymptotic result (10) holds. 

3. Comparison with wind tunnel data 

3.1. Experimental details 
Here we make detailed comparisons between the theory and measured moments of the 
concentration field downstream of a line source in grid turbulence (Sawford & 
Tivendale 1992). The measurements were conducted in a suction wind tunnel with a 
rectangular test section 0.69 m high, 1.07 m wide and 3.3 m long. The turbulence was 
generated with a planar 'punched plate' grid with circular holes of diameter 0.0208 m 
in a hexagonal pattern, and 'mesh' length (i.e. hole spacing) A4 = 2.54 x lo-' m, giving 
a solidity ratio of 0.39. Temperature fluctuations were produced by a heated Nichrome 
wire of diameter d = 0.213 mm placed a distance xo = 12.2M downstream of the grid 
and spanwise across the tunnel. The experiments were carried out with a mean air 
speed U = 5.0 m s-l. The Reynolds number, Re = UM/v,  was 8500 where v is the 
kinematic viscosity of unheated air (1.5 x lop5 m2 s-l at 20 "C). The power supplied to 
the wire was 200 W m-l, sufficient to eliminate vortex shedding. 

Temperature fluctuations were measured with a 50 R platinum cold wire 1.27 pm in 
diameter and 0.4 mm long using an in-house-designed temperature bridge. 

Cross-stream traverses of the plume were carried out using a screw-driven probe 
carriage. The cross-stream location of the probe was determined in relative terms to 
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0.0 1 mm. Traverses were carried out at approximately logarithmically spaced locations 
from 2 mm to 3 m downstream of the source. 

The temperature signal was low-pass filtered at 2 kHz and sampled at 4096 Hz. 
Statistics were calculated from 20 separate 1 s samples, i.e. from a total of 81920 
points. Temperature variance spectra indicated that frequencies up to 1 kHz account 
for 90 YO of the temperature variance at locations very near the source and over 99 YO 
of the variance far downstream. Our measurements, and the conclusions we draw 
here, are thus not strongly affected by instrumental averaging. 

At the beginning and end of each set of 20 samples, ‘background’ samples were 
taken with the source wire switched off and after approximately 30 s stabilization time. 
The trend in these background readings was used as a first estimate of the baseline 
relative to which the mean temperature is calculated. However, it was found that the 
true baseline temperature (estimated by inspection of the time series) is higher. This 
was probably due to the effect of heating of the probe stubs and supports since the 
baseline offset was found to be proportional to the measured mean temperature in the 
plume and a correction was made for this effect. 

3.2. Results 
At all locations downstream of the source, the mean concentration profile for the data 
is indistinguishable from Gaussian. The function x is therefore taken to be Gaussian. 
The first step in our analysis procedure is therefore to determine C, and a lengthscale 
(the mean plume dispersion, gZ) defining the Gaussian function x by a least-squares fit 
to the mean concentration data at a particular downstream location. We then fit the 
theory (12) to data for successively higher-order moments in turn, again using least- 
squares. The fit to 2 yields values for a and /3 which are then used in the fit to 2 in 
order to determine A, and so on. 

The above procedure was undertaken at 17 locations downstream of the source. In 
figure 1 fitted profiles are compared with the observations for the first four moments 
and also the skewness and kurtosis at three downstream locations: x / x o  = 6.45 x 
representative of the very near field, x / x ,  = 0.323 representative of the mid-field and 
x/x, = 8.39 which is representative of the far field. Different symbols for data points 
on figure 1 denote replications of the experiment, each of which has been independently 
fitted by the theory in order to indicate the experimental uncertainty in the process. 

In general the original Chatwin & Sullivan theory gives a remarkably good fit to the 
data for the fluctuation field (i.e. the second moment) provided a and /3 are allowed to 
be slowly varying functions of distance downstream. Further, when shape factors A, 
and A, (which are also slowly varying functions of downstream distance) appropriate 
to a non-uniform source are used, a very good fit is obtained to the data for the 
distributed third and fourth central moments, given the inevitable experimental scatter 
to be expected in these demanding measurements. 

In the near field the theory represents the first three moments well, particularly the 
location and magnitude of local extreme values, but does not represent the fourth 
moment at all well. The structure of the moments shown in figure l(a) is typical of 
locations up to distances x / x o  = 3.23 x lo-’ from the source, although over that range 
the local maximum in the third moment on the centreline gradually disappears, the 
centreline minimum in the even moments weakens and the fit to the fourth moment 
improves. There is a significant region near the centreline where the skewness is 
negative. 

In the mid-field the theory represents all four moments very well. The significant 
changes in the structure are that the off-centreline maxima disappear from the second 
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FIGURE 3. Best-fit values of the parameters (a) a and p, and (b) A, and A, as functions of downstream 
distance. The filled symbols represent fits to the data of Sawford & Tivendale (1992) as indicated in 
the legends. The open symbols in (a) represent fits to the data of Stapountzis et al. (1986) (0) and 
Warhaft (1984) (0) by Mosely (1991). The dashed lines in (a) represent the K = 0 limit for a Gaussian 
source, calculated from (19) and (20) using measured values of &(t) (see table 1). 

moment, corresponding to values of a z 2 in the theory (Chatwin & Sullivan 1990), 
and that the centreline value of the skewness changes sign to positive. 

Finally, in the far field as shown in figure l(c) the off-axis peaks in the second 
moment reappear weakly, corresponding to values of a < 2. Although there is 
significant noise in the data at this location the theory still represents the data well. The 
overall features of the distributions correspond to the original Chatwin & Sullivan 
(1990) theory that is given in (4). However, it must be emphasized that the solid lines 
in figure 1 are derived from (12) where, at a given experimental station, a different value 
of A, is introduced for the fit to each of the higher moments. 

The best-fit parameters for the theory are shown in figure 3 as functions of distance 
downstream from the source. Figure 3(a)  shows a and /3 which are the fundamental 
parameters of the original theory and which are determined solely by the concentration 
mean and variance profiles. Values of a and /3 extracted by Moseley (1991) from the 
data of Stapountzis et al. (1986) and Warhaft (1984) are also shown in figure 3(a). 
These values are broadly consistent with the present results, but exhibit considerably 
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4x0  
6.45 x 10-3 
9.68 x 10-3 
1.61 x 
2.26 x 
3.23 x 
4.84 x 
6.45 x 

u, (mm) 
0.29 
0.35 
0.46 
0.59 
0.79 
1.07 
1.33 

CT~ (mmz) 1 +e2 i 

0.068 1.24 0.14 
0.082 1.49 0.24 
0.110 1.92 0.37 
0.138 2.52 0.50 
0.180 3.47 0.65 
0.250 4.58 0.78 
0.320 5.53 0.86 

9 ' 3  

- 1.23 
-1.11 
-0.96 
-0.80 
-0.54 

0.48 
0.65 

P4 a p 
1.62 1.23 0.44 
1.44 1.26 0.57 
1.28 1.34 0.69 
1.18 1.44 0.77 
1.11 1.60 0.84 
1.10 1.78 0.89 
1.11 1.91 0.91 

TABLE 1. Centreline values of normaged concentration moments (the intensity, i2 = 2/c, skewness, 
S = c3/i2C;: and the kurtosis, K = c4//i"c;), and fit parameters ct and p, in the K = 0 limit for a 
Gaussian source in homogeneous turbulence. The moments are calculated from (17) and the fit 
parameters from (19) and (20). The plume dispersion, uz, is taken directly from the measurements of 
Sawford & Tivendale (1992). The source size is corrected for diffusive growth of the instantaneous 
plume; namely CT: = a ,+2~x /U,  where a, = 0.04 mm2, K = 0.35 cm2 s-l and U = 5 m s-l. The 
lengthscale x, = 310 mm. 

more scatter. In the near field a and /l follow the predictions for the K = 0, Gaussian 
source example of (19) and (20), which are shown as the dashed lines in figure 3 (a). In 
evaluating (19) and (20), measured values of the plume dispersion were used. Because 
the source wire is so small for the data reported in figure 3 (a), the instantaneous plume 
initially grows by molecular diffusion alone until it is large enough to be affected by the 
smallest turbulent eddies. The effective source size was therefore approximated by the 
sum of a constant term representing the size of the source wire and its boundary layer 
and a purely diffusive growth term, viz. ct = a, + 2 ~ x / U .  The molecular diffusivity was 
taken to be 0.35 cm2 s-' corresponding to a plume temperature of about 150 "C, and 
the wind speed was 5 m s-l. The constant term was taken to be 0.04 mm2 in order to 
match the predicted and measured intensity of concentration fluctuations (see figure 
4 (a)) at the measurement point nearest the source. These calculations are summarized 
in table 1. Although there is necessarily a degree of empiricism in these calculations, 
the agreement with the measured values of a and p suggests that the physical picture 
underlying (19) and (20) is correct at small distances from the source. At about 
x / x o  = 0.5, a reaches a maximum of about 2 corresponding, as noted earlier, to 
the disappearance of off-axis peaks in the variance profile. Further downstream a 
decreases steadily due to the interaction of molecular diffusion and the convective 
effects of the turbulence. With increasing distance downstream ,8 also departs from the 
K = 0 theory, reaching a maximum at x/x, z 0.06 and then decreasing steadily. There 
is no apparent sign of an approach to constant values of a and /3, which would indicate 
self-similarity of the scalar field, far downstream. 

The shape factors A, and A, are shown in figure 3 (b) ; they represent scaling factors 
for a, due to a non-uniform source, in the theory for the third and fourth moments 
as indicated in (12). The original theory for a uniform source (4) corresponds to 
A, = A, = 1, but these values do not give an adequate representation of the third 
and fourth moments. For example, for the present experimental data where a d 2 (see 
figure 3a), the centreline skewness is positive for x / x o  > 0.6 (figure 4b),  but the original 
theory predicts the centreline skewness to be negative (see Chatwin & Sullivan 1990, 
figure 6d) .  
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FIGURE 4. Centreline values of (a) the intensity of concentration fluctuations, (b) the skewness and (c)  
the kurtosis as functions of downstream distance. The points are the data of Sawford & Tivendale 
(1992). The lines are the theory (12) (-); the theory (12) with A, = A, = A, = h (---); with A, = 
A$ (--) (for (c)  only); with A, = 1.07 and A, = 1.15 (- . - . -), and the K = 0 limit (1  7) for a Gaussian 
source (see table l) ,  (. . . . . .). 
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3.3 .  Sensitivity analysis 

The variation in the shape factors is not strong (less than 10 % and 20 % for A, and A, 
respectively), so it is of interest to test the sensitivity of predictions of the moments to 
simple approximations to the shape parameters. 

A reasonable approximation for A, in terms of A, can be obtained from the 
hypothesis that the ratio A,+,/A, is a slowly varing function of n. By definition, 
A,/A, = A, so A,/A, z A, results in 

A4(x) z qx). (22) 

The values of A, calculated from (22), using the average values of A,, are given by 
the solid line in figure 3 (b) and are in good agreement with the measured values of A,(x) 
throughout the experimental range. To this degree of approximation the distributed 
moments can be represented by the three functions a(x), p(x) and A,@). 

In practical applications interest is mostly focused on the centre of the plume where 
concentrations are highest. In figure 4 we compare predictions of the centreline values 
of the normalized moments (the intensity, i2 = c"/q, skewness, S = z / i 2 q  and the 
kurtosis, K = p / i z C : )  with the measurements. The full theory is shown as the solid line 
in each of figures 4(a), 4 ( b )  and 4(c) .  The K = 0 limit (17) for a Gaussian source is also 
shown. 

Although the theory is capable of providing a good representation of most of the 
data over the whole range of downstream locations, four separate functions of distance 
are needed to do so. Accordingly, we also show in figure 4 three approximations to the 
full theory which are less demanding in their data requirements. 

The first of these uses a single function to represent all of the A,  for n = 2, 3 and 4 ;  
we simply use the mean h = ( A ,  + A, + A , ) / 3 ,  where we recall that A, = 1 by definition. 
Since the A always occur in combination with a, this approximation is equivalent to 
using only two functions, ha and p, to represent all three moments. It overestimates the 
intensity of fluctuations by a few percent but otherwise follows the trend very well. 
However, it provides only a tolerable representation of the skewness and kurtosis in the 
near field (x/x, < 0.04) and is quite poor in the far field. 

With the approximation (22), the intensity and skewness are unchanged from the full 
theory, and the downstream dependence of the kurtosis is represented almost as well 
as the full theory. 

Finally, we see from figures 4(b)  and 4(c)  that constant values of the shape factors 
(A ,  = 1.07; A, = 1.15) represent the centreline skewness and kurtosis well in the far 
field. 

We conclude that although the variation of the shape factors is not large it is 
nevertheless significant in accurately predicting the magnitude of the moments and 
hence a probability density function derived by inverting these moements. 

4. Conclusions 
For the special case of homogeneous turbulence we have examined the Chatwin & 

Sullivan (1990) theory using some simple theoretical results and a detailed experimental 
data set. In particular we have explored the effect of relaxing the assumption of a 
uniform source distribution and of allowing the parameters in the theory to be 
functions of downstream distance. 

The downstream domain can be divided into two regions: a near field where 
turbulent dispersion is small compared with the source lengthscale and where details 
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of the source distribution are important, and a far field where only broad features of 
the source are important. 

In the near field the structure of moments of the concentration field depends 
sensitively on the source distribution. The Chatwin & Sullivan theory does not, and 
cannot be expected to, reproduce this structure for complex source distributions such 
as multiple sources. However, even for single sources we show that in the near field the 
structure of concentration statistics is sensitive to the source distribution. In this case 
however, the a, /3 theory is capable of representing the structure of the second moment, 
but with different values of a and /3 for different sources. For a uniform source /3+ 1 
at the source, whereas a best-fit /3 for a Gaussian source approaches zero at the source. 
Thus we are able to explain the experimentally observed behaviour of /3 at small times 
in terms of departures from a uniform source distribution. 

In the far field we find through theoretical analysis that the spatial structure of the 
second moment is independent of the source distribution, although the values of the 
parameters a and /3 may still depend on the source details. In general however, the 
structure of each higher moment involves an additional parameter. Although these new 
parameters are identified in terms of integrals over the source distribution, these results 
are strictly valid for K = 0 and so in practice cannot be used to calculate the new 
parameters when K + 0. Rather, following the philosophy of the original Chatwin & 
Sullivan approach, these results suggest an underlying structure which can be modified 
in an heuristic way to account for the effects of molecular diffusion. The significance 
of the new results presented here is that they show that in general this underlying 
structure is more complicated than that in the original theory, but that this is only 
manifested in moments higher than the second. 

The extended theory gives a good representation of the first four moments of the 
concentration field downstream of a line source of heat in grid turbulence everywhere 
except for the higher moments very near the source. The asymptotic, self-similar, scalar 
field addressed in Chatwin & Sullivan (1990) is not clearly reached with these 
experimental data, and the small but significant differences in the shape factors, 
associated with the non-uniform source, do persist to the furthest measuring station 
downstream. 

The requirement to represent the behaviour of the first four moments of the 
concentration field over the whole downstream domain is very demanding and is 
unlikely to be met in detail by simple models such as those discussed here without the 
extensive parameterization inherent in the specification of the functions a and /3 and 
the shape factors. We have shown that some extension of the original theory is 
necessary (to get the right sign of the centreline skewness for example) but the 
requirements in practice are unlikely to be as demanding. For example, constant values 
of the shape factors work well in the far field. How broadly these simple results apply 
to other flow configurations will only be answered through detailed measurements and 
comparisons of the sort undertaken here. 
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